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Abstract

This paper thakes a brief insight in some interesting solutions direct to
navigate and localize a single robot, or a swarm, in known and unknown
environment.

1 Introduction

The problem of navigating and localizing a robot in both known and unknown
environment has been studied in many research centers. The use of sensors
to directly determine position by analizing wheels or legs motion (odometry)
lacks of precision, because of well known problems such as wheel slippage or
mechanical shocks coming from irregular terrain.

Global Positioning System (GPS) provides a quite accurate localization over
Earth surface, but it fails to direct the robot in terrains where centimeter preci-
sion is required, and obviously does not apply for indoor environments. More-
over GPS is not a solution for extraterrestrial mission (i.e. Mars exploration).

Finally, the use of landmarks and pre-set trajectories limitates the range of
use of a robot to well known environments, and even a slight change in the
topological disposition of landmars means for the robot to lose its guidelines.

So it seems clear that some methods are required for the robot to adapt to
new terrains or to build a map of a known environment. Here we want to take
a look at some solutions suggested by various researchers.

2 Overview

We will start reviewing some solutions, starting from single robot and then
considering multi robot approach.
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2.1 Single Robot Navigation

There are several navigation and localization techniques that we will examine
here. Each one uses different sensors and has different purposes.

2.1.1 Topological Simultaneous Localization and Mapping: Toward
Exact Localization Without Explicit Localization

This study, proposed by Choset and Nagatani[4], presents a low-level control
law to generate a topological map. Generalized Voronoi Graph (GVG) is used
to encode topological informations.

GVG is a one-dimensional set of curves that captures the salient topology
of the robot’s environment. Since it is defined in terms of distance functions,
GVG is practical to be used in a sensor-based implementation. Distance can be
obtained by sonar or laser sensor disposed over the perimeter of the robot.

Figure 1: An example of a GVG

In the planar case, GVG edges are simply the set of points equidistant to
two obstacles (see Figure 1). Using its sensors’ line-of-sight readings, the robot
incrementally builds the GVG: it simply moves away from the nearest obstacle,
following a precise direction, until it is equidistant to two obstacles. By repeating
this behaviour, the robot visits the whole environment - tipically a building -
and completes the GVG, which can therefore be used to plan a path between
any two locations.

Particular attention has to be posed in a procedure to determine if the
robot has encountered a new meet point1 or revisited an old one. Because
of dead-reckoning errors it is not enough to compare current coordinates with
the coordinates of all known meet points.

1A meet point is a point where GVG edges meet. When reaching a meet point the robot
has to decide which branch of GVG emanating from the meet point has to be taken. In Figure
1 mett points are numbered from 1 to 5

2



2.1 Single Robot Navigation 2 OVERVIEW

2.1.2 Sensor Fusion for Localizing a Mobile Robot Outside of Build-
ings

Hassel and Hertzberg [6] worked on a way to merge data coming from different
sensors to achieve a fine localization of a robot in outdoor environment. The
robot was equipped with inertial sensors (encoder that register wheel movement,
and a fiber-optical gyroscope) and vision sensors for pattern recognition.

Encoders were mounted on the passive wheels, so that - due to the high
weight of the robot - it was impossible for both wheels to be affected by slippage.
However, in case of slippage or bumps, measurement errors are corrected by data
coming from the gyroscope, since it is not affected by mechanical shocks. The
use of a GPS localization system in addition did not show any noticeable increase
in positioning accuracy.

So in the first step of this algorithm, data coming from inertial sensors (en-
coders and gyroscope) are fed into a Kalman filter2, which produces an estimated
position.

This estimate is then refined by the second step. Using the vision sensors
(i.e. laser scan) the robot identifies doors in the buildings around itself. Using
a map of all known doors, and the relative positions of the doors coming from
vision sensors, it is then trivial to pinpoint the absolute position of the robot,
and use this informations for a position update in the Kalman filter.

Experimental results are very encouraging. The robot had to navigate a
university campus from a starting point to a selected door, and enter it. Different
paths were used: within 50 meters range, the robot never missed the door it
had been given as a target. As the range increases, the number of missed doors
also grows, reaching 5 over 20 for a range of 520 meters.

2.1.3 Acquisition and Propagation of Spatial Constraints Based on
Qualitative Information

Ishida et al. [8] worked on a method for reconstructing qualitative positions of
landmarks from qualitative information acquired by visual observation. Since
this method requires a global point of view over the environment where the
landmarks are located, it is appliable both on robot with omnidirectional vision
sensors, and on a distributed vision system (DVS)3. The DVS approach is the
one considered in this paper.

The first step of this method, is the acquisition of a qualitative spatial model
by observing motion directions of a moving object form each landmark’s point
of view: when the projection of the moving object moves clockwise, in the

2The Kalman filter is a set of mathematical equations that provides an efficient computa-
tional (recursive) means to estimate the state of a process, in a way that minimizes the mean
of the squared error. The filter is very powerful in several aspects: it supports estimations of
past, present, and even future states, and it can do so even when the precise nature of the
modeled system is unknown. [3]

3DVS consists in multiple vision sensors embedded in an environment, in this case every
landmark is equipped with omnidirectional vision sensors.

3



2.1 Single Robot Navigation 2 OVERVIEW

omnidirectional sight of a vision sensor, the motion is qulitatively represented
as “right”, and if it moves counterclockwise, it is represented as “left”.

Figure 2: Observation for acquiring qualitative positions

With the observed motion directions, points are classified into a spatially
classified pair (SCP), which consists of a pair of point sets labeled “left” and
“right”; for example, the SCP consistent with Figure 2 is “{ABD},{C}”.

Next step in the algorithm is the acquisition of thee point constraints (3PCs)
from the SCP. To determine the qualitative position of the points this method
considers the relative position of the target with respect to a triangle where the
three landmarks are at the vertices. So, considering a SCP coming from sensor
readings, it is possible to acquire a 3PCs, and knowing the region of space where
the target is not present.
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Figure 3: Three point constraints.

As seen in Figure 3 there are several possible configuration, each one elim-
inates a region of space. When, iterating observation, enough SPC and 3PCs
are acquired, it is possible to uniquely determine the position of the target.

The last two steps of the algorithm classify the point into new SPCs based on
the 3PCs, and acquire new 3PCs (this step is called “constraint propagation”),
and then transform the 3PCs into the qualitative spatial model.

2.1.4 Exploiting the physics: towards Doppler-based navigation with
a bat-inspired mobile robot

Carmena and Hallam [5] showed how to use Doppler-shifts for ultrasound-based
navigation in mobile robots.

Since previous researches in ultrasonic sensor only considered extracting in-
formations from Time of Flight (ToF) for the first echo only, this study took
inspiration from biosonar. In particular the flight navigation system used by
a specific kind of bats, classificated as CF-FM (constant frequency - frequency
modulation), has been examined. The way these bats interpretate natural sen-
sor readings is quite similar to the way mobile robots navigate in laboratories
using their ultrasonic sensors.

To explore these possibilities a mobile robot (named RoBat) was built and
equipped with a biomimetic sonarhead and a signal processing package whose
operations, performed on the received echoes, are based upon a filterbank model
of the processing performed by mammalian cochlea. RoBat was designed to use
Doppler-shift informations to perform two particular tasks: convoy navigation
and obstacle avoidance.

Doppler-shift gives informations about the presence and the movement of a
reflecting surface (a wall, or another robot), allowing to know if it is closing or
getting away with respect to the couple emitter/receiver on board the robot.
After defining max doppler as the maximum Doppler-shift perceable by the
robot for a given velocity assuming a static reflector at 0◦ bearing angle, it is
possible to identify three situations:

• Doppler ≤0: there is no reflector in the way, of ther is a moving reflector
whose relative velocity with respect to the robot is zero or negative. In
this case the reflector is getting away, so the robot can navigate safely
within its perceptual range.

• 0 < Doppler < max doppler : there is either a static reflector in the way,
or a moving reflector with a positive relative velocity with respect to the
robot, but with a bearing angle sufficient to avoid a collision. In this case
there’s an object closing to the robot, but it is not in an intercept course.

• Doppler ≥max doppler : there is a moving reflector in the way with a
positive relative velocity with respect to the robot, and its bearing angle
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is 0 or close to 0. In this case something is closing to the robot, and it is
directly in front of it, so the robot should change its path immediately to
avoid a collision.

Basing on these parameters, a simple behaviour controller can be programmed
to avoid an obstacle.

It is the belief of the authors that Doppler-based sensors are a good resource
that is not yet been exploited in commercial ultrasonic sensors. Since Doppler-
shift is proportional to the cosine of the bearing angle between the robot and
the reflector, and given the dynamic nature of the world, where things move
and change their position, Doppler sensors are able to provide different kind of
data: Time of Flight, bearing angle and approaching/departing information.

2.1.5 A Unified Solution to Coverage and Search in Explored and
Unexplored Terrains Using Indirect Control

Pirzadeh and Snyder [1] worked on an indirect control solution for autonomous
robot navigation in both known and unknown environment. Indirect control
means that the algorithm does not determine a destination for the robot and
the calculates the path to reach it; instead the algorithm controls the robot path
by placing costs along paths the robot may take.

This study considers two kind of problems: coverage (the robot passes over
all parts of the taerrain that are free of obstacles) and the search problem
(the robot seeks for a specified target in the terrain). Both these problems
are considered for a known environment and an unknown environment.

Usually path planning algorithm have a known origin-destination pair to
work on. The problems faced by this study do not take this assumption: cov-
erage problem has the whole terrain as a destination; search problem does not
have a known destination, and may even not have any.

The key idea of this solution is to divide the terrain into cells, which are units
of area equal to the dimensions of the robot base. If the terrain is known then
the robot has a map of all obstructed cells (cells where an obstacle is present);
and if it is not, then the map can be built quite simply by using external sensors
(such as proximity or distance sensors). So, having a map it is trivial to navigate
in the terrain, since the problem is now discrete.
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Figure 4: Discrete map

The base algorithm for the covering problem of a known terrain:

• step 1) increment the current cell cost by a constant (this prevents the
robot from getting caught in endless loops, and minimizes the number of
times the robot covers the same cell)

• step 2) interrogate the neighboring cells to determine the least costrly
direction

• step 3) choose the direction (in case of tie, the decision is made basing on
up, down, right, left priority)

As stated before the control here is indirect: the choice of the direction (step 2)
is not based on the knowledge of the ultimate goal of the problem.

This base algorithm can be refined with two extensions:

• “Looking ahead in time”, which associates a high cost to cells that need
not to be traversed anymore, making them appear as obstacles, with the
condition that cells that provide the only traverseable path between two
free cells are not to be penalized

• “Looking ahead in space”, which considers wether all the cells in a certain
direction have been covered, and if so, penalizes that direction to prevent
the robot from determining it as a possible derection

For the search problem it is simple to modify this algorithm just adding a step
0 that looks in all directions for the target, marking all cells in the direction
where it is not found as covered, and preceeding towards the position of the
target. Furthermore, in the case of an unknown terrain, it is necessary to add a
preventive step which, using sensor readings, incrementally creates the map of
free/obstructed cells.
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2.2 Multi-robot navigation

Following we will see two studies covering multi-robot navigation problems.

2.2.1 A Multi-robot Approach to Stealty Navigation in the Presence
of an Observer

Mataric et al. [2] proposed a method for multiple robot low-visibility navigation
in presence of an observer.

It is well known that a multi-robot approach can give benefits as well as give
problems. In the case of stealth navigation, a robot swarm could be difficult
to manage, because of the larger profile exposed to the observer. This study,
however, deals with robots sequentially navigating in the environment, so that
trajectory calculated by one robot is then refined by the following. We take as
assumption that the observer has omnidirectional sensing, and the environment
consists of objects that can occlude the robots from the observer’s sensors.
Robots initially do not have a map of the environment, but the location of
the goal and the observer are known.

One at the time, robots sequentially traverse the environment, building (or
refining) an occupancy grid modeled by potential fields. Navigation waypoints
are extracted from the grid, and used in planning a low-visibility path. These
informations are passed from one robot to another, so that the successor can
use them to make decisions about waypoint selection, and build a new, more
precise, occupancy grid. By sharing informations each robot follows a lower
visibility path than its predecessor.

Potential fields used to model the grid in this case, as usual for obstacle
avoidance, contain informations about distance from the robot, the observer and
the goal. To enable the robots planning a low visibility trajectory an additional
field is needed, containing informations about occluded areas behind objects
(with respect to the observer’s position). Combining the fields robots can extract
lowest-valued regions, representing obstacle-free and low-visibility regions. As
a result, navigation waypoints are calculated using these data.

Further policies are considered in extracting waypoints, for example a local
repellor potential field is added to prevent nearby waypoint selection.

Experimental results, coming both from simulated and real experiments,
show that each traverse improves the previous in efficiency and decreased visi-
bility, proving the real advantage of a multi-robot approach.

2.2.2 Strategis for navigation of robot swarms to be used in land-
mines detection

Cassinis et al. [7] studied the possibility of introducting robot swarms in demi-
ning operations. Aside from the benefit of warrant the safety of human beings
during dangerous landmines detection operations, the use of multiple inexpen-
sive robots minimizes damage due to unexpected exploding mines allowing the
mission to be carried on anyway by the remaining units. To achieve these goals
robots must be able to cooperate in terms of avoiding intereference with each
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other, providing complementary informations via different sensors, sharing the
workload and dinamically reassigning tasks in case of robot failures.

One of the main advantage of using multiple small robots equipped with
different sets of sensor is the possibility of merge data to locate mines that are
undetectable by a single sensor, without dealing with complex and expensive
multi-sensor robots. Given the drawbacks of traditional centralized control (such
as high computational and communication complexity) a distributed control is
more suitable, since each robot decides for itself by observing the environment
and applying pre-defined control laws.

In order to control collision-free movement and contemporarily achieve a
specific goal, this study examines a vectorial movement strategy. So four vectors
have been identified, each one accomplishes one of the following goals:

1. avoiding obstacles, this vector can suppress all other vectors for the time
necessary to move past the obstacle

2. pointing to the goal

3. maintaining position in a specific formation

4. maintaining robot direction

Using these vectors in the right combination, six strategies can be defined

• random movement

• relay clustering: robot initally move randomly, when one finds a mine
it signal its position so that the others can reach it; cascade forwaring of
the signal is used to ensure full coverage

• flocking: robots head to the same direction keeping cohesion but main-
taining a certain distance between one another

• swarming: robots are attracted one another as the distance between
them increases, so they will move in the same direction

• formation maintenance: robots can move in coordination, each one
belonging to a specified team; the position of each robot in the formation
is fixed relatively to the team centroid

• comb movement: similar to formation maintenance, but formation changes
from line to column, passing from one goal to another one.

Experimental results proved that coordinate strategies find mines at a constant
rate, while uncoordinated ones result to be more efficient if many mines are still
undetected. It has also been noticed that, after a certain number, adding more
robots to the swarm dows not yeld a significant reduction of required time.
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