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Coordinated Multi-Robot Exploration
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Abstract—In this paper, we consider the problem of exploring
an unknown environment with a team of robots. As in single-robot
exploration the goal is to minimize the overall exploration time.
The key problem to be solved in the context of multiple robots is to
choose appropriate target points for the individual robots so that
they simultaneously explore different regions of the environment.
We present an approach for the coordination of multiple robots,
which simultaneously takes into account the cost of reaching a
target point and its utility. Whenever a target point is assigned to
a specific robot, the utility of the unexplored area visible from this
target position is reduced. In this way, different target locations
are assigned to the individual robots. We furthermore describe
how our algorithm can be extended to situations in which the com-
munication range of the robots is limited. Our technique has been
implemented and tested extensively in real-world experiments
and simulation runs. The results demonstrate that our technique
effectively distributes the robots over the environment and allows
them to quickly accomplish their mission.

Index Terms—Coordinated behavior, limited communication,
mobile robotics, multi-robot exploration.

I. INTRODUCTION

THE PROBLEM of exploring an environment belongs to
the fundamental problems in mobile robotics. There are

several applications like planetary exploration [3], reconnais-
sance [27], rescue [47], [62], mowing [30], or cleaning [19],
[31], [55] in which the complete coverage of a terrain belongs
to the integral parts of a robotic mission.

In this paper, we consider the problem of exploring unknown
environments with teams of mobile robots. The use of multiple
robots is often suggested to have several advantages over single
robot systems [9], [17]. First, cooperating robots have the po-
tential to accomplish a single task faster than a single robot
[26]. Furthermore, using several robots introduces redundancy.
Teams of robots therefore can be expected to be more fault-tol-
erant than only one robot. Another advantage of robot teams
is due to merging of overlapping information, which can help
compensate for sensor uncertainty. For example, multiple robots
have been shown to localize themselves more efficiently, espe-
cially when they have different sensor capabilities [21]. How-
ever, when robots operate in teams there is the risk of possible
interferences between them [20], [23]. For example, if the robots
have the same type of active sensors such as ultrasound sensors,
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the overall performance can be reduced due to cross-talk be-
tween the sensors. Also, the more robots are used the longer
detours may be necessary in order to avoid collisions with other
members of the team.

In this paper, we present an algorithm for coordinating a
group of robots so as to efficiently explore their environment.
Our method, which has originally been presented in [45]
and has been integrated into two different systems [8], [54],
follows a decision-theoretic approach to explicitly coordinate
the robots. It does so by maximizing the overall utility and
by minimizing the potential for overlap in information gain
amongst the various robots. Our algorithm simultaneously con-
siders the utility of unexplored areas and the cost for reaching
these areas. By trading off the utilities and the cost and by
reducing the utilities according to the number of robots that
already are heading toward this area, coordination is achieved
in a very elegant way. In practice, one also has to deal with a
limited communication range that restricts the communication
abilities of the vehicles. Naturally, the task of exploring a ter-
rain with limited communication range is harder than without
this constraint. If the distance between the robots becomes too
large to be bridged by the wireless network or if a temporal
network error occurs, robots may explore an area another robot
has already explored before, which can lead to a suboptimal
behavior. In this paper, we also describe an extension of our
algorithm to robot teams with a limited communication range.

Our technique has been implemented on teams of heteroge-
neous robots and has been proven effectively in real-world sce-
narios. Additionally, we have carried out a variety of simulation
experiments to explore the properties of our approach and to
compare the coordination mechanism to other approaches de-
veloped so far. As the experiments demonstrate, our technique
significantly reduces the time required to completely cover an
unknown environment with a team of robots compared to an ap-
proach which lacks our centralized coordination. Furthermore,
we describe experiments in which we analyze our algorithm in
the context of teams of mobile robots with a limited communi-
cation range.

This paper is organized as follows. In Section II, we present
our decision-theoretic approach to coordinated exploration with
mobile robots. In Section III, we briefly describe the technique
used by our system to acquire and communicate maps of the
environment. Section IV presents series of experiments carried
out with real robot systems and in simulation. Finally, we dis-
cuss related work in Section V.

II. COORDINATING A TEAM OF ROBOTS DURING EXPLORATION

The goal of an exploration process is to cover the whole en-
vironment in a minimum amount of time. Therefore, it is es-
sential that the robots keep track of which areas of the environ-
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ment have already been explored. Furthermore, the robots have
to construct a global map in order to plan their paths and to co-
ordinate their actions. Throughout this section, we first assume
that at every point in time both the map of the area explored so
far and the positions of the robots in this map can be communi-
cated between the robots. We will focus on the question of how
to coordinate the robots in order to efficiently cover the environ-
ment. At the end of this section, we will consider the situation
in which the robots have a limited communication range. The
mapping system will briefly be described in Section III.

Our system uses occupancy grid maps [46], [61] to represent
the environment. Each cell of such an occupancy grid map con-
tains a numerical value representing the posterior probability
that the corresponding area in the environment is covered by
an obstacle. Since the sensors of real robots generally have a
limited range and since often parts of the environment are oc-
cluded by objects, a map generally contains certain cells whose
value is “unknown” since they have never been updated so far.
Throughout this paper, we assume that “exploredness” is a bi-
nary concept and we regard a cell as explored as soon as it has
been intercepted by a sensor beam. At this point, we would like
to mention that the approach presented here is not restricted to
occupancy maps. The only requirement is that the underlying
representation of the environment must allow the distinction be-
tween known and unknown areas and to compute travel costs for
the individual robots. Therefore, our algorithm can also be ap-
plied to alternative representations like topological maps [11] or
coverage maps [57].

When exploring an unknown environment we are especially
interested in “frontier cells” [63]. As a frontier cell we denote
each already explored cell that is an immediate neighbor of an
unknown, unexplored cell. If we direct a robot to such a cell, we
can expect that it gains information about the unexplored area
when it arrives at its target location. The fact that a map gener-
ally contains several unexplored areas raises the problem of how
to assign exploration tasks represented by frontier cells to the in-
dividual robots. If multiple robots are involved, we want to avoid
several of them moving to the same location. To deal with these
problems and to determine appropriate target locations for the
individual robots our system uses a decision-theoretic approach.
We simultaneously consider the cost of reaching a frontier cell
and the utility of that cell. For each robot, the cost of a cell is
proportional to the distance between the robot and that cell. The
utility of a frontier cell instead depends on the number of robots
that are moving to that cell or to a place close to that cell.

In the following subsections, we will describe how we com-
pute the cost of reaching a frontier cell for the individual robots,
how we determine the utility of a frontier cell, and how we
choose appropriate assignments of frontier cells to robots.

A. Costs

To determine the cost of reaching the current frontier cells, we
compute the optimal path from the current position of the robot
to all frontier cells based on a deterministic variant of the value
iteration, a popular dynamic programming algorithm [5], [29].
In the following, a tuple corresponds to the th cell in the
direction of the -axis and the th cell in direction of the -axis
of the two-dimensional occupancy grid map. In our approach,

Fig. 1. Typical value functions obtained for two different robot positions. The
black rectangle indicates the target points in the unknown area with minimum
cost.

the cost for traversing a grid cell is proportional to its oc-
cupancy value . The minimum-cost path is computed
using the following two steps.

1) Initialization. The grid cell that contains the robot loca-
tion is initialized with 0, all others with :

if is the robot position
otherwise.

2) Update loop. For all grid cells do:

where is the maximum occupancy probability value of a
grid cell the robot is allowed to traverse. This technique updates
the value of all grid cells by the value of their best neighbors,
plus the cost of moving to this neighbor. Here, cost is equivalent
to the probability that a grid cell is occupied
times the distance to the cell. The update rule is repeated until
convergence. Then each value corresponds to the cumu-
lative cost of moving from the current position of the robot to

. The convergence of the algorithm is guaranteed as long
as the cost for traversing a cell is not negative and the environ-
ment is bounded. Both criteria are fulfilled in our approach. The
resulting value function can also be used to efficiently derive
the minimum-cost path from the current location of the robot to
arbitrary goal positions . This is done by steepest descent
in , starting at .

Fig. 1 shows the resulting value functions for two different
robot positions. The black rectangle indicates the target point
in the unknown area with minimum travel cost. Note that the
same target point is chosen in both situations. Accordingly, if
the robots are not coordinated during exploration, they would
move to the same position which obviously is not optimal.

Our algorithm differs from standard value iteration in that it
regards all actions of the robots as deterministic, which seriously
speeds up the computation. To incorporate the uncertainty of
the robots’ motions into the process and to benefit from the ef-
ficiency of the deterministic variant, we smooth the input maps
by a convolution with a Gaussian kernel. This has a similar ef-
fect as generally observed when using the nondeterministic ap-
proach. It introduces a penalty for traversing narrow passages
or staying close to obstacles. Therefore, the robots generally
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prefer target points in open spaces rather than behind narrow
doorways. Note that the maps depicted in Fig. 1 have not been
smoothed to allow the reader to distinguish between walls (dark
grey) and the values of the final value function (light grey).

B. Computing Utilities of Frontier Cells

Estimating the utility of frontier cells is more difficult. In fact,
the actual information that can be gathered by moving to a par-
ticular location is impossible to predict, since it very much de-
pends on the structure of the corresponding area. However, if
there already is a robot that moves to a particular frontier cell,
the utility of that cell can be expected to be lower for other
robots. But not only the designated target location has a reduced
utility. Since the sensors of a robot typically cover a certain re-
gion around a particular frontier cell as soon as the robot arrives
there, even the expected utility of frontier cells in the vicinity of
the robot’s target point is reduced.

In this section, we will present a technique that estimates the
expected utility of a frontier cell based on the distance and vis-
ibility to cells that are assigned to other robots. Suppose in the
beginning each frontier cell has the utility which is equal for
all frontier cells if no additional information about the useful-
ness of certain positions in the environment is available. When-
ever a target point is selected for a robot, we reduce the utility
of the adjacent frontier cells in distance from according to
the probability that the robot’s sensors will cover cells in
distance . One can estimate by maintaining a posterior
about the estimated distances to be measured. While the robot
moves through the environment, this posterior is updated.

Thus, any cell in distance from the designated target
location will be covered with probability when
the robot reaches . Accordingly, we compute the utility

of a frontier cell given that the
cells have already been assigned to the robots

as

(1)

According to (1), the more robots move to a location from where
is likely to be visible, the lower is the utility of . Note that

we also take into account whether there is an obstacle between
two frontier cells and . This is achieved by a ray-casting
operation on the grid map. If there is an obstacle between two
frontier cells and , we set to zero.

In extensive experiments we could not find a significant dif-
ference in the resulting exploration time depending on in which
environment the posterior has been learned. We therefore
use the following approximation:

if
otherwise

(2)

where is the maximum range reading provided by
the range sensor.

Fig. 2. Target positions obtained using the coordination approach. In this case
the target point for the second robot is to the left in the corridor.

C. Target Point Selection

To compute appropriate target points for the individual robots
we need to consider for each robot the cost of moving to a loca-
tion and the utility of that location. In particular, for each robot
we trade off the cost to move to the location and the utility

of .

Algorithm 1: Goal Assignment for Coordinated Multi-Robot
Exploration.

1) Determine the set of frontier cells.
2) Compute for each robot the cost for reaching each

frontier cell .
3) Set the utility of all frontier cells to 1.
4) while there is one robot left without a target point do
5) Determine a robot and a frontier cell which satisfy:

.
6) Reduce the utility of each target point in the visibility

area according to .
7) end while

To determine appropriate target points for all robots, we use
an iterative approach. In each round, we compute that tuple
where the number of a robot and is a frontier cell, which has
the best overall evaluation . We then recompute the
utilities of all frontier cells given the new and all previous as-
signments according to (1). Finally, we repeat this process for
the remaining robots. This results in Algorithm 1. The com-
plexity of this algorithm is where is the number of
robots and is the number of frontier cells.

The quantity determines the relative importance of
utility versus cost. Experiments showed that the exploration
time stays nearly constant if . For bigger values
of the exploration time increases because the impact of the
coordination is decreased. If is close to 0 the robots ignore
the distance to be traveled which also leads to an increased
exploration time. Therfore, generally is set to 1 in our current
implementation.

Fig. 2 illustrates the effect of our coordination technique.
Whereas uncoordinated robots would choose the same target po-
sition (see Fig. 1), the coordinated robots select different frontier
cells as the next exploration targets. When coordinating a team
of robots during exploration one question is when to re-compute
the target locations. In the case of unlimited communication, we
compute new assignments whenever one robot has reached its
designated target location or whenever the distance traveled by
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the robots or the time elapsed after computing the latest assign-
ment exceeds a given threshold.

D. Coordination With Limited Communication Range

In practice, one cannot assume that the robots can exchange
information at any point in time. For example, the limited range
of nowadays wireless networks can prevent robots from being
able to communicate with other robots at a certain point in time.
If the distance between the robots becomes too large so that
not all robots can communicate with each other, a centralized
approach as described above can no longer be applied. How-
ever, our algorithm can easily be adapted to cope with a limited
communication range. In our system, we apply our approach to
each sub-team of robots which are able to communicate with
each other. Obviously, this can, at least in the worst case, lead
to a situation in which all robots individually explore the whole
environment. In practical experiments, however, we found that
this approach still results in a quite efficient exploration process,
since the robots can quickly exchange necessary information
and coordinate with each other again as soon a connection be-
tween them has been reestablished.

In the case of limited communication, we apply a slightly dif-
ferent strategy to determine when to compute new assignments.
In our experiments, we found that the risk of redundant work
is increased if the robots forget about the assignments of other
robots as soon as the communication breaks down. Instead, if
each robot stores the latest target locations assigned to other
robots the overall performance is increased especially in situ-
ations in which the communication range has been exceeded,
since the robots avoid going to places already explored by other
robots. This approach turned out to be useful especially in the
context of small robot teams.

III. COLLABORATIVE MAPPING WITH

TEAMS OF MOBILE ROBOTS

To explore their environment and to coordinate their actions,
the robots need a detailed map of the environment. Further-
more, the robots must be able to build maps online, while they
are in motion. The online characteristic is especially important
in the context of the exploration task, since mapping is con-
stantly interleaved with decision making as to where to move
next. To map an environment, a robot has to cope with two
types of sensor noise: Noise in perception (e.g., range measure-
ments), and noise in odometry (e.g., wheel encoders). Because
of the latter, the problem of mapping creates an inherent local-
ization problem, which is the problem of determining the loca-
tion of a robot relative to its own map. The mobile robot map-
ping problem is therefore often referred to as the concurrent
mapping and localization problem (CML) [41] or as the simul-
taneous localization and mapping problem (SLAM) [10], [15].

Our system applies the statistical framework presented in de-
tail in [61] to compute consistent maps while the robots are ex-
ploring the environment. Each robot starts with a blank grid
map. During exploration each robot simultaneously performs
two tasks: It determines a maximum likelihood estimate for its
own position and a maximum likelihood estimate for the map

Fig. 3. Coordinated exploration by a team of three robots with unlimited
communication abilities in a real-world experiment.

(location of surrounding objects). To recover from possible lo-
calization errors, each robot maintains a posterior density char-
acterizing its “true” location (see [61]). The current version of
the system relies on the following two assumptions.

1) The robots must begin their operation in nearby locations,
so that their range scans show substantial overlap.

2) The software must be told the approximate relative initial
pose of the robots. Thereby errors up to 50 cm and 20
degrees in orientation are admissible.

To achieve the coordination, the team must be able to com-
municate the maps of the individual robots during exploration.
In our current system, we assume that the robots set up an ad hoc
network which forms clusters. The messages sent by a robot are
forwarded to all team-mates within the corresponding cluster.
Whenever two clusters are merged, care has to be taken to avoid
that robots become overly confident in the state of the environ-
ment. Suppose that each cluster maintains an occupancy grid
map built from all observations made by the robots of that team.
As an example, let us assume that two robots that share a map

leave their communication range. As long as they explore the
environment individually they update their maps and obtain two
different maps and . Now suppose the robots can com-
municate again and exchange their maps. If they use the recur-
sive update rule for occupancy grids to combine and the
information originally contained in is integrated twice in the
resulting map, which is not admissible.

There are several ways to avoid the multiple use of sensor
information. One solution is to prevent the robots from ex-
changing information more than once [22], which reduces
the benefit of a multi-robot system. An alternative solution is
that each robot maintains an individual map for each other
robot. These maps, which can be combined to a joint map,
can be updated separately. In our current system, we apply a
different approach that we found to be less memory intensive.
Furthermore, it reduces the communication overhead. In this
approach, each robot stores for each other robot a log of sensor
measurements perceived by this robot. A robot only transfers
those measurements that have not been transmitted to the
corresponding robot so far. Additionally, the robots maintain
a small data structure containing the time stamp of the latest
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Fig. 4. Uncoordinated exploration with two robots. In (a) and (b), both robots drive along the corridor, but robot 1 is slower than robot 2. In (c), robot 1 reached
the end of the corridor, but robot 2 already has explored the right room. Due to the convolution of the maps, the path from robot 1 to the left room through the
corridor has lower cost (one doorway) compared to the path through the right room (two doorways). Therefore, robot 1 turns around and follows the corridor. In
(d), robot 2 has entered the left room from the right-hand side and explored it.

Fig. 5. Coordinated exploration by two robots. In (b), both robots focus on different frontiers due to the coordination strategy. Therefore, robot 1 explores the left
room and robot 2 the right one. This leads to a better performance compared to the uncoordinated behavior.

sensor measurement of a robot that was transmitted to all other
robots. This allows the robots to discard those measurements
which have been received by all other robots already.

IV. EXPERIMENTAL RESULTS

The approach described has been implemented and exten-
sively tested on real robots and in different environments. Ad-
ditionally, we performed a series of simulation experiments.

A. Exploration With a Team of Mobile Robots

The first experiment is designed to demonstrate the capability
of our approach to efficiently cover an unknown environment
with a team of mobile robots. To evaluate our approach, we in-
stalled three robots (two Pioneer I and one iRobot B21) in an
empty laboratory environment. Fig. 3 shows the map of this en-
vironment. The size of the environment is 18 m 14 m. Also
shown are the paths of the robots which started in the upper left
room. As can be seen from the figure, the robots were effec-
tively distributed over the environment. This demonstrates that
our approach can effectively guide a team of mobile robots to
collaboratively explore an unknown environment.

B. Comparison Between Uncoordinated and
Coordinated Exploration

The goal of the second experiment described here is to il-
lustrate the advantage of our coordination technique over an
approach in which the robots share a map but in which there
is no arbitration about target locations so that each robot ap-
proaches the closest frontier cell. For this experiment we used
two different robots: An iRobot B21 robot equipped with two
laser-range scanners covering a 360 field of view (robot 1) and

a Pioneer I robot equipped with a single laser scanner covering
a 180 field of view (robot 2). The size of the environment to be
explored in this experiment was 14 m 8 m and the range of
the laser sensors was limited to 5 m.

Fig. 4 shows the typical behavior of the two robots when they
explore their environment without coordination, i.e., when each
robot moves to the closest unexplored location. The white ar-
rows indicate the positions and directions of the two robots.
Since the cost for moving through the narrow doorway in the
upper left room are higher than the cost for reaching a target
point in the corridor, both robots decide first to explore the cor-
ridor. After reaching the end of the corridor, robot 2 enters the
upper right room. At that point, robot 1 assigns the highest utility
to the upper left room and therefore turns back. Before robot 1
reaches the upper left room, robot 2 has already entered it and
has completed the exploration mission. As a result, robot 2 ex-
plores the whole environment on its own while robot 1 does not
contribute anything. The overall time needed to complete the
exploration was 49 s in this case.

However, if both robots are coordinated, they perform much
better (see Fig. 5). As in the previous example, robot 2 moves to
the end of the corridor. Since the utilities of the frontier cells
in the corridor are reduced, robot 1 directly enters the upper
left room. As soon as both robots have entered the rooms, the
exploration mission is completed. This run lasted 35 s.

C. Simulation Experiments

The previous experiments demonstrate that our approach
can effectively guide robots to collaboratively explore an un-
known environment. To get a more quantitative assessment,
we performed a series of simulation experiments in different
environments.
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Fig. 6. Simulated exploration with three robots.

Fig. 7. Situation in which the assignments resulting from the algorithm given
in Algorithm 1 are sub-optimal (a). If robot 1 moves to point a and robot 2 moves
to the location b as illustrated in (b), the time needed to finish the exploration
task is reduced, since the maximum time needed to reach the rooms is lower.

To carry out these experiments, we developed a simulation
system that allows us to consider the effects of various param-
eters on the exploration performance. The simulator can handle
an arbitrary number of robots. It uses a discretized represen-
tation of the state space into equally sized cells of 15 cm
15 cm and 8 orientations. Additionally, it models interferences
between the robots. Whenever robots are close to each other,
the system performs the planned movement with a probability
of 0.7. Thus, robots that stay close to each other move slower
than robots that are isolated. This approach is designed to model
cross-talk between active sensors such as ultrasound devices as
well as time delays introduced by necessary collision avoidance
maneuvers.

Screen shots of this simulation system during a run in which
three robots explore the environment are shown in Fig. 6. The
simulator also allows the specification of different properties of
the robot systems and sensors. To carry out these experiments,
we used sensors with a 360 field of view as is the case, for
example, for robots equipped with two laser range sensors or
with a ring of ultrasound sensors. Note that our approach does
not require a 360 field of view. In the past, we successfully
applied our approach even to robots with a limited field of view,
equipped only with a single laser scanner [8], [54].

Throughout these experiments, we compared three different
strategies. The first approach is the technique used by Yamauchi
et al. [63] as well as Singh and Fujimura [56], in which each
robot always approaches the closest unexplored area of a joint
map. In the sequel, this approach will be denoted as uncoordi-
nated exploration since it lacks a component that arbitrates be-
tween the robots whenever they choose the same frontier cells.
The second approach is our coordination approach specified by
Algorithm 1. Additionally, we evaluated an alternative approach
that seeks to optimize the assignments computed in lines 4–7 of
our algorithm. For example, consider the situation depicted in
Fig. 7. Here two robots are exploring a corridor with two rooms.
The already explored area is depicted in grey/yellow. Suppose
both target points and have the same utility. In the first round
of the iteration (see while loop in Algorithm 1), our algorithm
assigns robot 2 to since this assignment has the least cost of all

Fig. 8. Maps used for the simulation experiments: (a) unstructured, (b) office,
and (c) corridor environment.

other possible assignments. Accordingly, in the second round,
robot 1 is assigned to . The resulting assignments are depicted
in Fig. 7(a). If we assume that both robots require the same
amount of time to explore a room, this assignment is clearly
sub-optimal. A better assignment is shown in Fig. 7(b). By di-
recting robot 1 to the left room and robot 2 to the right room, the
whole team can finish the job earlier, because the time required
to reach the rooms is reduced.

One approach to overcome this problem is to consider all pos-
sible combinations of target points and robots. Again, we want
to minimize the tradeoff between the utility of frontier cells and
the distance to be traveled. However, just adding the distances to
be traveled by the two robots does not make a difference in situ-
ations like that depicted in Fig. 7. Since the robots execute their
actions in parallel the time to complete the whole task depends
on the longest trajectory. To minimize the completion time (by
choosing more balanced trajectories for the individual robots),
we therefore modify the evaluation function so that it considers
squared distances to choose target locations :

Algorithm 2: Goal selection determining the best assignment
over all permutations.

1) Determine the set of frontier cells.
2) Compute for each robot the cost for reaching each fron-
tier cell.
3) Determine target locations for the robots

that maximizes the following evaluation function:
.

The resulting algorithm that determines in every round the op-
timal assignment of robots to target locations according to this
evaluation function is given in Algorithm 2. Compared to the
selection scheme of our algorithm, the major problem of this
approach lies in the fact that one has to figure out
possible assignments in the worst case where is the number of
possible target locations, is the number of robots, and .
Whereas this number can be handled for small teams of robots,
it becomes intractable for larger teams, because the number
of possible assignments grows exponentially in the number of
robots. In practice, one therefore needs appropriate search tech-
niques to find good assignments in a reasonable amount of time.
In the experiments described here, we applied a randomized
search technique combined with hill-climbing to search for op-
timal assignments of frontiers to robots.

To compare these three strategies, we chose a set of different
environments depicted in Fig. 8. For each environment and each



382 IEEE TRANSACTIONS ON ROBOTICS, VOL. 21, NO. 3, JUNE 2005

Fig. 9. Performances of the different coordination strategies for the environments shown in Fig. 8: (a) unstructured environment, (b) office environment, and
(c) corridor environment.

Fig. 10. Time required on a Pentium 4 2.8-GHz machine to compute the
assignment of target locations to robots for three different strategies.

number of robots we performed 45 different simulation experi-
ments for each strategy. In each comparison of the three strate-
gies, the robot team was started at the same randomly chosen
location. We then evaluated the average number of time steps
the system needed to complete the job. The resulting plots are
shown in Fig. 9. The error bars indicate the 5% confidence level.
As can be seen from the figure, the team using our algorithm sig-
nificantly outperforms the uncoordinated system with respect to
the exploration time. This is mainly due to the fact that Algo-
rithm 1 provides a better distribution of the robots over the envi-
ronment. We repeated the experiments without modeling the in-
terference between the robots. The results of these experiments
were quite similar and revealed a similar relative improvement
of our algorithm compared to the uncoordinated approach.

It is worth noting that the randomized optimization strategy
usually yields slightly better results than our coordination tech-
nique although the improvement is not significant. Thus, the
transition from our algorithm, which has complexity ,
to a complex search that seeks to determine the optimal assign-
ment from all permutations appears to yield only
slight improvements. Given the computational overhead intro-
duced by the randomized search in the space of all permutations
(see Fig. 10), especially for large teams of robots Algorithm 1
appears to be preferable over Algorithm 2.

D. Exploration Under Limited Communication

The final experiments are designed to analyze the perfor-
mance of our coordination strategy if the robots only have a lim-
ited communication range. As explained above, if the commu-

nication range is limited the robots cannot globally coordinate
their actions anymore. As a result, different robots may explore
the same regions which reduces the overall efficiency.

The first experiment described in this section was carried out
with three robots in our laboratory environment. Throughout
this experiment, we limited the communication range to 5 m.
Fig. 11 depicts the exploration process. Each row shows the
maps of the individual robots at different points in time. The
initial situation is depicted in the first row. The communica-
tion ranges of the robots are highlighted by colored/grey disks
around each robot. As can be seen from the second row, the
robots were quickly split up in this experiment and had to plan
their trajectories individually. In row three, the robots and

are able to communicate again and therefore can exchange
their maps and coordinate their behavior again. Robot , how-
ever, still acts independently of the other two robots. In row five,

and again leave their communication range, whereas
and can merge their maps and approach the last unexplored
area in the top left corner. In the last row, the robots and
complete the exploration task.

To analyze the influence of the communication range, we per-
formed a large series of simulation experiments. For different
numbers of robots (1–5) and seven different communication
ranges, we carried out 45 simulation runs. In each run, we chose
a random starting point for the robot team. We regard the explo-
ration task as completed as soon as the known area in the map
of one robot covers the whole environment. The results are de-
picted in Fig. 12. The -axis shows the communication range
of the robots in relation to the maximum distance in the map,
whereas the -axis depicts the average exploration time. If the
communication range is close to zero the coordinated and un-
coordinated strategies behave similar, because all robots act in-
dependently most of the time. As the communication range in-
creases, the benefit of the coordinated approach improves. An
interesting result of this experiment is that a communication
range of 30% of the diameter of the environment appears to be
sufficient to yield the same performance as with unlimited com-
munication.

V. RELATED WORK

The various aspects of the problem of exploring unknown en-
vironments with mobile robots have been studied intensively in
the past. Many approaches have been proposed for exploring
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Fig. 11. Coordinated exploration by a team of three robots with limited
communication abilities. Each column shows the evolution of the map of one
robot over time.

unknown environments with single robots [11], [16], [18], [24],
[37], [44], [58], [60], [64], [65]. Most of these approaches guide
the robot to the closest unexplored area, just as our approach
does when applied to a single robot system. These techniques
mainly differ in the way the environment is represented. Pop-
ular representations are topological [11], [37], metric [18], or
grid-based [64], [65]. Furthermore, there is a serious amount
of theoretical work providing a mathematical analysis of the
complexity of exploration strategies including comparisons for
single robots [1], [2], [13], [14], [35], [42], [49]. Additionally,
Lee and Recce [40] provide an experimental analysis of the

performance of different exploration strategies for one mobile
robot.

Also the problem of exploring terrains with teams of mobile
robots has received considerable attention in the past. For ex-
ample, Rekleitis et al. [50]–[52] focus on the problem of re-
ducing the odometry error during exploration. They separate
the environment into stripes that are explored successively by
the robot team. Whenever one robot moves, the other robots are
kept stationary and observe the moving robot, a strategy similar
to the presented by Kurazume and Shigemi [39]. Whereas this
approach can significantly reduce the odometry error during the
exploration process, it is not designed to distribute the robots
over the environment. Rather, the robots are forced to stay close
to each other in order to remain in the visibility range. Thus,
using these strategies for multi-robot exploration one cannot ex-
pect that the exploration time is significantly reduced.

Cohen [12] considers the problem of collaborative mapping
and navigation of teams of mobile robots. The team consists
of a navigator that has to reach an initially unknown target lo-
cation and a set of cartographers that randomly move through
the environment to find the target location. When a robot dis-
covers the goal point, the location is communicated among the
cartographers to the navigation robot which then starts to move
to that location. In extensive experiments, the author analyzes
the performance of this approach and compares it to the optimal
solution for different environments and different sizes of robot
teams.

Koenig et al. [34] analyze different terrain coverage methods
for ants which are simple robots with limited sensing and com-
putational capabilities. They consider environments that are dis-
cretized into equally spaced cells. Instead of storing a map of the
environment in their memory, the ants leave markers in the cells
they visit. The authors consider two different strategies for up-
dating the markers. The first strategy is Learning Real-Time A
(LRTA ), which greedily and independently guides the robots
to the closest unexplored areas and thus results in a similar
behavior of the robots as in the approach of Yamauchi et al.
[63]. The second approach is Node Counting, in which the ants
simply count the number of times a cell has been visited. The
authors show that LRTA is guaranteed to be polynomial in the
number of cells, whereas Node Counting can be exponential.

Billard et al. [7] introduce a probabilistic model to simu-
late a team of mobile robots that explores and maps locations
of objects in a circular environment. In several experiments,
they demonstrate the correspondence of their model with the
behavior of a team of real robots.

In [4], Balch and Arkin analyze the effects of different kinds
of communication on the performance of teams of mobile robots
that perform tasks like searching for objects or covering a ter-
rain. The “graze task” carried out by the team of robots corre-
sponds to an exploration behavior. One of the results is that the
communication of goal locations does not help if the robots can
detect the “graze swathes” of other robots.

The technique presented by Kurabayashi et al. [38] is an off-
line approach, which, given a map of the environment, computes
a cooperative terrain sweeping technique for a team of mobile
robots. In contrast to most other approaches, this method is not
designed to acquire a map. Rather the goal is to minimize the
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Fig. 12. Performances of the coordinated strategy with limited communication range for the different environments (a) (unstructured, (b) office, (c) and corridor
environment). The x-axis shows the communication range in relation to the size of the environment, the y-axis the average exploration time. As can be seen, the
results of these experiments look very similar in all tested environments.

time required to cover a known environment which can lead to
a more efficient behavior in the context of cleaning or mowing
tasks.

Yamauchi et al. [63] present a technique to learn maps with
a team of mobile robots. In this approach, the robots exchange
information about the map that is continuously updated when-
ever new sensor input arrives. They also use map-matching tech-
niques [64] to improve the consistency of the resulting map. To
acquire knowledge about the environment all robots move to the
closest frontier cell. The authors do not apply any strategies to
distribute the robots over the environment or to avoid that two
or more robots exploring the same areas.

One approach toward cooperation between robots has been
presented by Singh and Fujimura [56]. This approach especially
addresses the problem of heterogeneous robot systems. During
exploration, each robot identifies “tunnels” to the so far unex-
plored area. If a robot is too big to pass through a tunnel, it in-
forms other robots about this task. Whenever a robot receives a
message about a new task, it either accepts it or delegates it to
smaller robots. In the case of homogeneous robots, the robots
follow a strategy similar to the system of Yamauchi et al. [63].
Recently, Howard et al. [28] presented an incremental deploy-
ment approach that is similar to the technique described here.
Whereas their approach explicitly deals with obstructions, i.e.,
situations in which the path of one robot is blocked by another,
they do not consider the problem of limited communication.
Zlot and colleagues [66] have recently proposed an architec-
ture for mobile robot teams in which the exploration is guided
by a market economy. In contrast to our algorithm, they con-
sider sequences of potential target locations for each robot and
trade tasks using single-item first-price sealed-bid auctions. In
several experiments, we figured out that the treatment of the as-
signment problem as a multi-agent traveling sales-man problem
yields advantages if the number of robots is small compared to
the number of frontier cells. However, in the case of multiple
robots this TSP-approach can be disadvantageous. Whenever a
robot discovers a new frontier during exploration, this robot will
often be the best suited to go on it [66]. We found that this can
lead to an unbalanced assignment of tasks to robots so that the
overall exploration time is increased. Ko et al. [33] present a
variant of our approach that uses the Hungarian Method [36]
to compute the assignments of frontier cells to robots. Practical
experiments showed that the Hungarian Method yields a similar

performance as our coordination algorithm. Only in the case of
small robot teams our approach appeared to be slightly superior
since it provides a better distribution of the robots over the envi-
ronment. A further advantage of our algorithm compared to the
Hungarian Method lies in the fact that it can be implemented
very easily.

Furthermore, there are approaches which address the problem
of coordinating two robots. The work presented by Bender and
Slonim [6] theoretically analyzes the complexity of exploring
strongly-connected directed graphs with two robots. Roy and
Dudek [53] focus on the problem of exploring unknown en-
vironments with two robots and present an approach allowing
the robots with a limited communication range to schedule ren-
dezvous. The algorithms are analyzed analytically as well as
empirically using real robots.

Several researchers have focused on architectures for multi-
robot cooperation. For example, Grabowski et al. [25] consider
teams of miniature robots that overcome the limitations imposed
by their small scale by exchanging mapping and sensor infor-
mation. In this architecture, a team leader integrates the infor-
mation gathered by the other robots. Furthermore, it directs the
other robots to move around obstacles or to direct them to un-
known areas. Jung and Zelinsky [32] present a distributed action
selection scheme for behavior-based agents which has success-
fully been applied to a cleaning task. Stroupe et al. recently pre-
sented the MVERT-approach [59]. Their system uses a greedy
approach that selects robot-target pairs based on proximity. The
goal of the action selection is to maximize cooperative progress
toward mission goals. In contrast to our algorithm, the MVERT
system does not discount areas close to the selected goal loca-
tions. Matarić and Sukhatme [43] consider different strategies
for task allocation in robot teams and analyze the performance
of the team in extensive experiments. Recently, Parker [48] de-
scribed a project in which a large team of heterogeneous robots
is used to perform reconnaissance and surveillance task. This
work differs from our approach in that it investigates how to
jointly accomplish a task with heterogeneous robots that cannot
solve it individually.

VI. SUMMARY AND CONCLUSIONS

In this paper, we presented a technique for coordinating a
team of robots while they are exploring their environment. The
key idea of this technique is to simultaneously take into account
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the cost of reaching a so far unexplored location and its utility.
Thereby, the utility of a target location depends on the proba-
bility that this location is visible from target locations assigned
to other robots. Our algorithm always assigns that target location
to a robot which has the best tradeoff between utility and costs.
We also presented an extension of our technique to multi-robot
systems that have a limited communication range.

Our technique has been implemented and tested on real robots
and in extensive simulation runs. Experiments presented in this
paper demonstrate that our algorithm is able to effectively coor-
dinate a team of robots during exploration. They further reveal
that our coordination technique significantly reduces the explo-
ration time compared to exploration approaches that do not ex-
plicitly coordinate the robots. Further experiments demonstrate
that the performance of our technique nicely scales with the
range of the communication link.

Despite these encouraging results, there are several aspects
which could be improved. One interesting research direction is
to consider situations in which the robots do not know their rel-
ative positions even if they can communicate with each other.
In this case, the exploration problem becomes even harder since
the robots now have to solve two problems. On one hand they
have to extend the map and on the other hand they need to find
out where they are relative to each other. Additionally, we want
to investigate scenarios in which the robots may malfunction or
break or in which the environment changes over time.
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[23] D. Goldberg and M. Matarić, “Interference as a tool for designing and
evaluating multi-robot controllers,” J. Robot. Autonomous Syst., vol. 8,
pp. 637–642, 1997.

[24] H. González-Baños et al., “Planning robot motion strategies for efficient
model construction,” in Proc. Int. Symp. Robot. Res. (ISRR), 2000, pp.
345–352.

[25] R. Grabowski et al., “Heterogeneous teams of modular robots for map-
ping and exploration,” J. Autonomous Robot., vol. 8, no. 3, pp. 293–308,
2000.

[26] D. Guzzoni et al., “Many robots make short work,” AI Mag., vol. 18, no.
1, pp. 55–64, 1997.

[27] D. Hougen et al., “A miniature robotic system for reconnaissance and
surveillance,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2000, pp.
501–507.
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