

WebFinger Server

Version: 1.3

October 21, 2013

Copyright © 2013

Packetizer, Inc.

WebFinger Server

 2

Contents
1 Introduction .. 3

2 Technology Employed ... 3

3 Server Software Components ... 3

4 Installing the Software .. 4

4.1 Extract the Server Software .. 4

4.2 Install MySQL and Create the Database Tables .. 4

4.3 Putting the CGI Script in Place .. 4

4.4 Populating the Database ... 5

4.5 Modify the webfinger_config.pl File ... 7

4.6 Putting the files from the “lib” directory in place ... 7

5 Using the WebFinger and Host Metadata Server ... 8

6 Database Schema .. 8

6.1 “webfinger_resources” Table ... 8

6.2 “webfinger_resource_properties” Table .. 8

6.3 “webfinger_aliases” Table .. 8

6.4 “webfinger_links” Table .. 9

6.5 “webfinger_link_properties” Table .. 9

6.6 “webfinger_link_titles” Table ... 9

Legal Information

The WebFinger Server software package copyright © 2013 by Packetizer, Inc.

This software is licensed as "freeware". Permission to distribute this software in source and binary

forms, including incorporation into other products, is hereby granted without a fee. THIS SOFTWARE IS

PROVIDED 'AS IS' AND WITHOUT ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE. THE AUTHOR SHALL NOT BE HELD LIABLE FOR ANY DAMAGES RESULTING FROM THE USE OF

THIS SOFTWARE, EITHER DIRECTLY OR INDIRECTLY, INCLUDING, BUT NOT LIMITED TO, LOSS OF DATA OR

DATA BEING RENDERED INACCURATE.

Packetizer and that Packetizer logo is a registered trademark of Packetizer, Inc.

WebFinger Server

 3

1 Introduction
WebFinger is a HTTP-based protocol for discovering information about people and things on the

Internet. Given a Universal Resource Identifier (URI), such as an email address or account identifier, one

can find the address of a person’s blog, address card (e.g., vCard or xCard), avatar, or other useful

information. The response to a WebFinger query is a JSON object that is suitable for processing by the

requesting application.

This server software implements all features specified in the WebFinger specification (RFC 7033).

2 Technology Employed
The WebFinger Server is written entirely in the popular scripting language Perl, meaning that it should

be easily ported to any Linux machine without any effort. It was written using Perl 5.14, though it

should work with older versions of Perl. There was no intent or desire to use “cutting edge” Perl

features, as the primary objective was to ensure portability of code and ease of system recovery in the

event of a failure.

The server relies on MySQL for data storage. It might be possible to utilize other databases, such as

SQLite, but no effort was made and no testing has been performed. MySQL was selected for

performance reasons and for the fact that tools like phpMyAdmin and MySQL Workbench make it

simple to administer.

The server was written for the Apache web server, though it might work for other web servers.

However, no other web servers have been targeted or tested. There are no new or advanced features

required from the Apache web server, so virtually any deployed Apache server should work with the

server.

3 Server Software Components
The server software is comprised of a main CGI script called “webfinger.cgi” and two library files, one

that provides database connectivity functions and one used to configure parameters.

The WebFinger Server software package contains the following files:

Directory Tool Description

cgi/

 webfinger.cgi This is the main WebFinger Server application. It will provide a
response to queries for the well-known resource “webfinger”.

config/

 apache.config This file shows how one can use re-write rules so that requests that
come to the server might be directed to the appropriate location.
This is just a sample configuration and you should modify this file
for your environment.

 webfinger.sql This contains the SQL statements to create the database tables
used by the server. Note that all table names start with

http://www.packetizer.com/rfc/rfc7033/

WebFinger Server

 4

“webfinger_” to avoid name collisions, should you wish to use an
existing database.

docs/

 WebFinger
Server.pdf

This is the document you are reading.

lib/

 database.pl This is a library that contains the functions to connect and
disconnect from the database.

 webfinger_config.pl This contains a set of global configuration variables. This script
must be modified to contain values that are appropriate for the
environment.

4 Installing the Software

4.1 Extract the Server Software
Extract the installation file to create the file structure described in the previous section. The file is

provided as a .tgz file that can be easily extracted using the following command on Linux:

$ tar -xzvf /path/to/webfinger_distribution.tgz

4.2 Install MySQL and Create the Database Tables
Installing MySQL the first time will require a bit of work, but take notes and save your configuration files.

Installing it a second time will be a snap, should you migrate to another server, for example. This

document will not go into detail on MySQL installation, maintenance, tuning, etc. There are numerous

resources on the Internet that do that already. Documentation abounds here:

http://dev.mysql.com/doc/index.html.

Once you have the MySQL server running, you either need to create a new database or select an existing

database. Let’s assume you create a database called “webfinger”. Once the database is created, use

the following command to create the tables used by the server:

$ mysql webfinger < config/webfinger.sql

If you do not already have a database “user” account defined that the WebFinger server can use, be

sure to create one and give that user usage rights to the webfinger-related tables. You may grant

additional privileges, but “usage” rights are needed at a minimum.

4.3 Putting the CGI Script in Place
Where you put the CGI script is not so important, but a convenient location is in the htdocs/.well-known

directory on the server. If you have no other .well-known services on the server, then you may need to

create the .well-known directory.

You next need to make the Apache configuration changes. Look at the sample configuration for

guidance (in the config/apache.conf file). The configuration example does a couple of important things:

http://dev.mysql.com/doc/index.html

WebFinger Server

 5

1. Any attempt to access the .cgi script directly is met with a 404 response code

2. A request to /.well-known/webfinger invokes the webfinger.cgi script and passes the query

string

The configuration lines are designed to go either in an .htaccess file or in the <VirtualHost> section of

the Apache configuration file.

Note that the WebFinger specification states that WebFinger is required to be used only over TLS

connections. You must install the script and configuration lines on servers where TLS is supported. On

most Apache servers, that might mean adding lines to the ssl.conf file as appropriate, though use

of .htaccess is certainly possible and popular with generic hosting services.

4.4 Populating the Database
The server does not come with software for populating the database. This must be done manually using

the ‘mysql’ command or using tools like phpMyAdmin. A complete explanation of every table and every

field is found in Section 6.

Start by inserting a “resource”. A “resource” is a person or thing about which you would like others to

be able to discover information.

For example, let’s say there is a user named “bob” with an email (mailto:) address and an account (acct:)

URI in the domain “example.com”. One would start by inserting an account URI into the

“webfinger_resources” table. The row might have the following data elements after the insertion:

skey resource name

1 acct:bob@example.com Bob Smith

The skey field is used to relate data about Bob to properties and links also defined for Bob. The “name”

column is there for the administrator’s benefit. It is never returned in a query to the server.

Bob has an email address, which is really just an alias for his account. So, insert a row into the

“webfinger_aliases” table for Bob’s email address. The data record would look something like this:

skey pkey alias

1 1 mailto:bob@example.com

The “skey” field in the “webfinger_aliases” table is the serial key row for that table. The “pkey” refers to

the “parent key”, which is the field webfinger_resources.skey. All tables are related in this way, as

described in the database schema section.

With the alias in place, a user issuing a query to the server for either acct:bob@example.com or

mailto:bob@example.com will receive a response back that contains substantially the same

information. The only difference is that the server will make changes to the “aliases” array returned as

appropriate. Specifically, if one queries an alias like “mailto:bob@example.com”, the alias is actually the

WebFinger Server

 6

“subject” of the request and is therefore removed from the aliases array. However, the primary

resource identifier “acct:bob@example.com” is inserted into the aliases array.

A user might also have defined “properties”. A property might be the person’s name or other useful

information. A table of commonly used “properties” will be maintained here:

http://www.packetizer.com/webfinger/properties.html.

Let’s assume Bob’s name is published via a property record, both in Bob’s default language and

simplified Chinese. The entries in the webfinger_resource_properties table might look like this:

 skey pkey type value

1 1 http://packetizer.com/ns/name Bob Smith

2 1 http://packetizer.com/ns/name#zh-CN 鲍勃·史密斯

Next, there would be a set of links that point to information about Bob. Let’s assume Bob has a blog

located at http://blogs.example.com/bob/ called “The Magical World of Bob” in English and “Le Monde

Magique de Bob” in French. To publish that fact via WebFinger, one would define the link to the blog

using the “webfinger_links” table. The entry for Bob’s Blog might look like this:

ske
y

pke
y

orde
r

relation type templat
e

href

1 1 1 http://packetizer.com/rel/blo
g

text/htm
l

N http://blogs.example.com/bob
/

As before, the pkey relates to the resource record for Bob. The order column indicates the order in

which records should be placed into the “links” array returned to the requesting client. The “relation”

column specified the link relation type. The above type refers to a blog. The “type” column (which is

optional) refers to the media type expected to be returned by the resource. Finally, the “href” column

provides the URL to Bob’s blog.

Recall that Bob has two titles for his blog. These titles may be inserted into the “webfinger_link_titles”

table as in the following:

skey pkey lang title

1 1 en-US The Magical World of Bob

2 1 fr Le Monde Magique de Bob

Here, pkey refers to the “webfinger_links.skey” value, which allows association of these titles with the

parent link.

WebFinger also defines “properties” for links. The link properties table structure is exactly the same as

the properties table for resources. For example usage of link properties, please see the documentation

on this site: http://www.packetizer.com/webfinger/.

That’s about it. It’s pretty simply to add additional resources or links to the database.

http://www.packetizer.com/webfinger/properties.html
http://www.packetizer.com/webfinger/

WebFinger Server

 7

4.5 Modify the webfinger_config.pl File
The lib/config.pl file contains a lot of system-wide configuration parameters that must be set before you

try to use the server. All of the configuration parameters are defined below. Note that all of the

variables start with “$main::”. This is Perl syntax to indicate that the variable is global. Do not change

that.

Parameter Description

database_user_id This is the MySQL database “user” identifier that the server
should use.

database_password This is the MySQL database password associated with the
above user ID.

database_name This is the name of the MySQL database to access.

database_server This is the hostname where the MySQL database server is
running. By default, this value is set to “localhost”, since it is
assumed the MySQL database will be local. However, the
MySQL database could be installed on an entirely separate
machine.

database_use_ssl If set to 1, then SSL will be used for database connections. A
value of 0 indicates that SSL is not used.

cors_policy This is the CORS policy advertised in replies to the client. The
default value is “*”, but may be changed. For more
information about CORS, see http://www.w3.org/TR/cors/.

status_messages This is a hash of status codes and associated terse messages.
Generally, this should not be modified.

error_messages This is a hash of status codes and associated verbose messages.
You may wish to modify these to provide better description or
to return a message in a different language.

4.6 Putting the files from the “lib” directory in place
Where you place the files from the “lib” directory is not important, but the Perl script has to be able to

find them when executed. Let’s assume that you have a directory for storing files related to your web

site called “example.com”. Inside that directory, you might have this structure:

example.com/

 htocs/

 cgi-bin/

 lib/

Given this structure, you could put the “lib” files into the above “lib” directory. Apache needs to be told

where to find the files. To do that, set the PERL5LIB environment variable in the .htaccess file or inside

the <VirtualHost> directive, like this:

SetEnv PERL5LIB /path/to/example.com/lib/

http://www.w3.org/TR/cors/

WebFinger Server

 8

5 Using the WebFinger and Host Metadata Server
Once installed and configured, you can start using the server immediately after restarting the web

server. You can perform some simple tests using tools like curl:

$ curl https://example.com/.well-

known/webfinger?resource=acct:bob@example.com

Of course, you should change the URLs to be appropriate for your installation.

6 Database Schema
There are a six database tables defined for use by the server software. They are each presented in this

section with an explanation of each table and column. Every text field is defined to be a UTF-8 string.

All unsigned integers (uint) are 64 bits in length.

6.1 “webfinger_resources” Table
The “webfinger_resources” table defines all of the people and things that should be discoverable when

the server is queried.

Column Name Type Description

skey uint A unique serial number assigned to each resource record

resource varchar(255) The URI of the resource

name varchar(255) A name the server admin would like to assign to the resource to
make data management easier.

6.2 “webfinger_resource_properties” Table
The “webfinger_resource_properties” table defines properties related to the host or to a specific

resource.

Column Name Type Description

skey uint A unique serial number assigned to each resource property
record

pkey uint This is the serial key for the resource (webfinger_resources.skey)

type varchar(255) An identifier that identifies the property type

value varchar(255) The value of the property

6.3 “webfinger_aliases” Table
The “webfinger_aliases” table defines aliases for a specific resource.

Column Name Type Description

skey uint A unique serial number assigned to each alias record

pkey uint This is the serial key for the resource (webfinger_resources.skey)

alias varchar(255) This is the alias URI for the specified resource

WebFinger Server

 9

6.4 “webfinger_links” Table
The “webfinger_links” table defines links related to the host or to a specific resource.

Column Name Type Description

skey uint A unique serial number assigned to each link record

pkey uint This is the serial key for the resource (webfinger_resources.skey)

order uint This is the order in which links are to be placed into the array
when returned to the client, with the lower values appearing first
in the links array

relation varchar(255) This is the link relation type, such as ‘copyright’ or
‘http://packetizer.com/rel/blog’

type varchar(128) This is the media type expected to be returned by the related link

href varchar(1024) This is the target URI for the link relation

6.5 “webfinger_link_properties” Table
The “webfinger_link_properties” table defines properties related to a specific link.

Column Name Type Description

skey Uint A unique serial number assigned to each link property record

pkey Uint This is the serial key for the link (webfinger_links.skey)

type varchar(255) An identifier that identifies the property type

value varchar(255) The value of the property

6.6 “webfinger_link_titles” Table
The “webfinger_link_titles” table defines titles related to a specific link.

Column Name Type Description

skey uint A unique serial number assigned to each link property record

pkey uint This is the serial key for the link (webfinger_links.skey)

lang varchar(255) The language associated with a specific title (may be “default”)

title varchar(255) A title for the link

